If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+10x^2-90=0
a = 10; b = 1; c = -90;
Δ = b2-4ac
Δ = 12-4·10·(-90)
Δ = 3601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{3601}}{2*10}=\frac{-1-\sqrt{3601}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{3601}}{2*10}=\frac{-1+\sqrt{3601}}{20} $
| 4•x=9•x+30 | | 12=4/3 (2x−1) | | 6(7b+1)+3=-327 | | y=-2×+2y=×-4 | | 3/2(x+1)=3 | | 2/3(x+1)=3 | | 23(x+1)=3 | | 10c+5=105 | | 2a+12=33/7 | | √x+13=15 | | x-2x=6x-18 | | 2(7)+6=5y | | k+14=54 | | 5(y+2/5(=-13 | | -40-2x+110=-8x+100 | | k-4¾=81/4 | | (2x+6)=(x-3=3) | | 4(8y-4.8)=2(0.9y+5.4)+5 | | -4(2x-3)+6=3(-4x+2) | | 5x+20=5x+4x | | ?x6.5=3.2 | | 293x+17=29 | | 5x+20=5x0 | | xx3.2=6.5 | | 5x+20=5x5 | | 5x+20=5x4x | | 26=c/23 | | 29+20=5a+6 | | 191=m+254 | | (2x+11)°=(6x–7)° | | 1/18x-5/7=3/4 | | 6x+20=8x–16 |